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Note 

Accurate Calculation of the Eigenvalues of 
the x2 + nx2/( 1 + gx’) Potential 

I. INTRODUCTION 

In recent years, the solutions of the Schrijdinger stationary equation 

HY = EY, H=p2 f V(x), (1) 

where p = -id/dx and 

V(x) = x2 $ Ax”/( 1 $ gx’), (2) 

have attracted considerable attention [l-91 due to their applications in a wide variety 
of problems of physical interest [ 1,2]. 

The ground state and the two first energy levels were first computed by Mitra \ 11 
for a large range of A and g values (d, g = 0 up to 100) within thq variational 
Ray~eigh-Ritz framework. Later on, various authors performed more exact 
cafculations by means of different techniques 13-51. However, the marked 
disagreement among different sources is highly significant and it suggests that such 
results are not as accurate as they claim to be. 

The purpose of this work is to present a new alternative procedure to obtain the N 
eigenvalues. It consists of calculating three quantities which converge towards these 
eigenvalues. The difference between any two of these quantities is a measure of the 
error made in the calculation. This peculiar property bestows on the method a 
complete selfconsistent property and makes it very trusty. 

The paper is organized as follows: in Section II we develop briefly the theoretical 
details related to the method. Then, in Section III it is applied to problem (2) in order 
to calculate the corresponding eigenvalues for several A and g values. Finally, the 
results are compared with values reported previously by different authors and their 
respective significances are pointed out. 

II. METHOD 

Let us consider the eigenvalue problem 

W’(x) = E Y(x), a<x<bb, (3) 
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where H =pz -+- V(x) and 

Y(a) = A Y’(a), t4a.l 

Y(b) = BY’(b). (4b) 

The constants A and B do not depend on a, b. For the sake of simplicity, we shall 
assume in what follows that Y is normalized 

(Yl Y)=i” Y”(x)dx= 1. (5) a 

Differentiating (3) with respect to b, multiplying the result by Y and integrating 
between a and b, we obtain (using current quantum mechanical notation) 

The integration by parts of the first term of the right-hand side of (6) leads us to 

-= y/E yay/' b l3E 
c?b 3b - 8b a’ (74 

wheref’ holds for df/dx. Similarly 

(6) 

(lb) 

The right-hand side of (7) can be written in a more suitable form by making use of 
(4). Differentiating (4) with respect to a and b, it follows that 

(x=a)+ Y’(x=a)=A 1% (x=a)+ Y”(x=a)}, 

(g) (x=a)=A (sj (~=a), 

(x = b), 

(84 

@b) 

(8~) 

(x=b)+ Y’(x=b)=B g(x=b)+ Y”(x=b) (84 

By introducing (8) in (7), we obtain the master equations [lo] 

$-= {B’(V(b)-E)- I} Y’(b)*, 

$=-(A’(V(a)-E)- 1) Y’(a)*. 

@a> 

Pb) 
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In this work we are interested only in even potentials so that it is better to consider 
symmetric intervafs (a = -4 < 0, A = S). When these conditions are ful~lled, the two 
master equations (9) are identical. 

When B = A = 0, the eigenfunctions of H satisfy Dirichlet (D) boundary con- 
ditions 

H!P = EDYD n ?I”, Y/f(b) = 0, (10) 

and (9) leads us to the well-known expression [ 111 

aE;/ab = -((Yyf)’ (x = b)jf (11) 

Let { !PH, E, 1 be the discrete set of eigenfunctions and eigenvalues of H when 
b-, m; then 

lim E:(b) = E,. 
h-m (124 

Equations (11) and (12a) state that Ef decreases monotonically to its limit E, when 
b-tco 

E,Dp$. (12b) 

The quantum mech~ical virial theorem [ 12 ] 

-b(tVZ~/‘~b) = 2( Y,D / p”Y’:> - (!P,D ( xv’ !P,D), (13) 

can be transformed into 

L,(b) = E,D + (f)(X,“/db) = (Y; / (V + XV/~) Y,D), (14) 

by making use of (10). From (11) and (12) we see that 

L, < E:, ji%Ln=E,. 4 

On the other hand, when B(=A) -+ cx, the eigenfun~tions of H will satisfy von 
Neumann (N) boundary conditions 

HYI; = E,N!P;, (Y;)’ (x= +b)=O. (16) 

In this case the master equations (9) give 

aE;/ab = {V(b) -E;}{ !#‘E;‘(x = b)}? (17) 

When V(X) is a monotonous increasing function of 1x1, it is very easy to deduce that 

aE,N/‘ab > 0, WI 
i?E f /c?b < 0 when b< b, (n=bO), (18b) 
aE~~~b > 0 when b > b, (n # 0), (18~) 
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where b, is the root of V(b) = E:(b). Inequalities (18) can be easily demonstrated 
from (16) and (17) 1131. F rom Eqs. (18) and previous assumptions it follows at once 
that 

E,N@) < En if b>b,, (19a) 

lim E:(b) = E,. 
b-a? 

(19b) 

Equations (12), (15), and (19) are the basis of our method which consists of 
solving the eigenvalue equations (10) and (16) for such a large b-values that Et = Ey 
holds. Since E,D and Ez are upper and lower bounds to the eigenvalues E,, respec- 
tively, then the difference E,D - Er measures the inaccuracy of the results. Another 
very useful test of the exactness of the computed eigenvalues is the difference 
E,D - L,. 

It seems that L, is a lower bound to E, for those particular potential functions 
considered here, but we cannot prove it except for the ground state. Nevertheless, if 
L, is a lower bound or not, is wholly immaterial for our future discussions. 

In conclusion, our basic assumption is that the computed eigenvalue is exact up to 
the last figure that fultils 

ED=E”=L n n ll’ (20) 

This makes the method self-consistent and provides a very good test of accuracy of 
results. 

III. RESULTS AND DISCUSSION 

After developing the basic ideas of our method, it only remains to solve Eqs. (10) 
and (16) in order to obtain Et, L,, and Ey . The way of performing it is irrelevant 
and we shall adopt here the Rayleigh-Ritz (RR) variational method. The most simple 
basis sets which fulfil the appropriate boundary condition are the sets of eigen- 
functions of H, =p2 

(21) 

(22) 

Because of the form of the potential function (2) we are not able to compute its 
matrix elements directly but we can perform this calculation through the method 
reported by Harris et al. [ 141. Briefly, this method consists of diagonalizing the 
matrix (x,) of x ki will denote its eigenvalues) 
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by means of a similarity transformation T 

T- ‘(X,)T = kid,), 

and then computing the matrix of V(x) as 

(V,i) = T(Voli) 6,) TV’. 
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(24) 

(25) 

Of course, V, is only an approximation to ($i ] V#j), but the results are very good if 
the matrix is large enough. 

When dealing with even potentials (as it is our actual case) it is better to 
diagonalize x2 instead of x. Besides, in such a case it is possible to avoid too large 
matrices by noticing that even and odd functions do not mix. 

Although easy to apply, the procedure just described is more time consuming than 
a straightforward application of the RR variational method [ 1 ] and at first sight it 
might seem that no advantage was obtained. However, all this work makes the 
method so trustworthy that we can be sure about the accuracy of results. This fact is 
of great importance if one takes into account the marked disagreement among 
previous eigenvalue computations ] 1, 3-5 1. 

The eigenvalues E, of problem (l)-(2) are exactly known for several particular A-, 
g-, and n-values. For example 16, 71, 

E,(g) = 1 - 2g if A= -2g(2 + g), (264 

E,(g) = 7 + A/g if i = -2g(2 + 3g). Pb) 

Table I shows clearly that our numerically computed eigenvalues agree with 
Eq. (26) up to the eighth decimal place. At the bottom of the table we have added the 
b-value and the matrix dimension M (equal for all matrices) used to achieve these 
results. 

The M- and b-values employed in this paper are not minimal, but large enough to 
reach convergence. 

TABLE I 

Numerical Calculation of Ground State E, and First Excited State E, of Potential (2) When 
I= -2g(2 + g) and J. = -2g(2 t 3g), Respectively 

g EO g E, 

0.2 0.60000000 0.2 1.80000000 
0.4 0.20000000 0.4 0.60000000 
0.6 -0.20000000 0.6 -0.60000000 
0.8 -0.60000000 0.8 -- 1.80000000 
1.0 - 1 .oooOOOO 1.0 -3.0000000 

Note. M= 30, 6 = 6. 
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In Table II we display the eigenvalues of the Hamiltonian (l)-(2) for a wide range 
of A- and g-values. Our results (Es(A4, b)) satisfy (20) up to the last figure and, in 
general, agree better with Bessis and Bessis’ eigenvalues (Ei) 131 than with those 
reported by Bhagwat (Ei) 141. 

The two following facts: 

(4 our results are in a total agreement with the known exact eigenvalues 
(Table I), 

(b) the quantities Ei, L,, and Et converge to the same limit without violating 
any theoretical result obtained in Section II, allow us to conclude that our eigenvalues 
should be exact up to the last figure. Therefore, they should be more accurate than 
those reported in [3,4], except for very large (A, g)-values (say L = g = loo), where 
Ef L,, and EF converge too slowly. 

TABLE II 

Eigenstates of the Potential (2) for Various I- and g-Values 

1=O.l,g=O.l 
(X46) 

0 1.04317372 
1 3.1200818 
2 5.1810948 
3 7.23 10100 

I=O.l,g= I 

(40,7) 
0 1.0241096 
I 3.05 14902 
2 5.0589632 
3 7.0648862 

i=O.l,g= 10 
(4037) 

0 1.00594~90 
1 3.0088 110 
2 5.0082804 
3 7.0090376 

~=O.l,g=100 
(4OJ.5) 

0 1.00084462 
1 3.0009832 
2 5.0009294 
3 7.0009845 

1.04317371 
3.12008186 
5.18109479 
7.23100998 

1.02418675 
3.05 165067 
5.05928655 
7.06549833 

1.0059428 
3.0088109 
5.00828042 
7.0090376 

1.0008411 
3.000983 1 
5.0009257 
7.0009845 

/I= l,g=O.l 

(30,10) 
1.043174 0 1.38053180 
3.120089 I 4.0798830 
5.181112 2 6.6679 192 
7.231014 3 9.1665674 

A=l,g=l 
(366) 

1.024112 0 1.23235072 
3.051498 1 3.5073884 
5.058980 2 5.5897790 
7.064899 3 7.6482012 

d= l,g= 10 

(4036) 
1.005948 0 1.05929708 
3.008817 I 3.0880908 
5.008291 2 5.0828478 
7.009050 3 7.0903704 

i=l,g=lOO 

(40,5 ) 
1.000855 0 1.008434 
3.000989 1 3.0098322 
5.000936 2 5.0092874 
7.000999 3 7.009846 

1.38053 180 1.30533 
4.07988301 4.079900 
6.66791910 6.667938 
9.16656747 9.166578 

1.23237205 1.232353 
3.50742053 3.507397 
5.58986086 5.689803 
7.64831681 7.648212 

1.05929700 1.059298 

3.0880908 3.08809 I 
5.0828477 5.082864 
7.0903704 7.090384 

1.00844106 1.008465 
3.00983 17 3.009840 
5.0092755 5.009317 
7.0098449 7.009849 

Table continued 
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TABLE ‘II (co~f~~~e~) 

Eigenstates of the Potential (2) for Various d- and g-Values 

n E:: Ei: EC, n E:: Eb, E:; 
~...._ -- -.--- 

a= lO,g=O.l 
(4034) 

0 3.2502612 
I 9.6190664 
2 15.729336 
3 21.591006 

a= lO,g= I 
(40&I 

0 2.7823306 
I 7.4175058 
2 10.701025 
3 13.388323 

a= lO,g= 10 
(60,4.5) 

0 1.5800222 
I 3.879024 
2 5.833268 
3 7.902 

I=IO,g=lOO 
(60,4.5) 

0 1.084 IO 
I 3.0983 176 
2 5.0927812 
3 7.0984502 

3.25026 122 
9.6190664i 

15.7293363 
21.5910055 

2.182330 
7.417506 

10.7010259 
13.3883239 

1.5800249 
3.8790372 
5.8327692 
7.9031549 

1.0840643 
3.0983170 
5.09276246 
7.098449 I 

a= lOO,g=O.l 
(40,3) 

3.250264 0 9.9761800 
9.619087 1 29.78 I 192 

15.729379 2 49.292690 
21.591056 3 68.513062 

a= IOO,g= 1 
(40>5) 

2.782331 0 9.3594180 
7.417534 1 26.705966 

10.701033 2 41.441100 
13.388354 3 53.839094 

a= lOO,g= 10 
(6035) 

1.580028 0 5.7939424 
3.879039 1 11.5721968 
5.832771 2 13.62877 12 
7.903174 3 ‘45.9984342 

a= lOO,g= LOO 
(60,4.5) 

1.084138 0 1.836422 
3.098330 I 3.983 1 
5.092807 2 5.928378 
7.098468 3 7.984 

9.97618009 9.976199 
29.7811911 29.781266 
49.292905 49.2928 16 
68.5 130522 68.5 13244 

9.3594 1803 9.359432 
26.705965 26.706007 
41.4410998 41.441139 
53.839093 53.839119 

5.793947 5.793965 
11.572198 11.572215 
13.62879 13.628777 
15.988706 15.988477 

1.8363850 1.83646 1 
3.9830992 3.983112 
5.9283525 5.928395 
7.9844448 7.984464 

In Section’11 we restrict ourselves to dealing with even potentials because we were 
interested in problem (1 j(2) only. But Eqs. (9) are of a general enough nature to let 
the method be applied to any one-dimensional quantum mechanical model provided 
its potential functions do not have singularities in (--co, co). 

The combination of the theoretical conclusions displayed in Section II with the RR 
variational method is a very helpful procedure to obtain eigenvalues of known 
accuracy. In those cases where a direct computation of the matrix elements of V is 
not possible, we can employ the method deveIoped by Harris et al. [ 14 1 and Endres 
1151. 
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